Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
2.
J Int Med Res ; 51(12): 3000605231219170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147642

RESUMO

OBJECTIVE: To identify factors associated with in-hospital and outpatient survival of patients with different types of stage IV cancer who present with venous thromboembolic disease (VTE). METHODS: In this prospective cohort, in-hospital and outpatient survival rates up to 180 days were analyzed using Kaplan-Meier curves. Cox regression was used to identify factors associated with different survival functions. RESULTS: One hundred patients were analyzed (median age, 67.5 years; 75% with Charlson index of <10; 69% with Eastern Cooperative Oncology Group (ECOG) score of 3-4). In-hospital mortality was 18%, and the median time from admission to death was 11 days (interquartile range, 1-61 days). Factors significantly associated with in-hospital mortality were the ECOG score and thrombocytopenia. The 180-day mortality rate was 52%, with deaths mainly occurring in the first 90 days since VTE diagnosis. Additional factors significantly associated with outpatient mortality included male sex and neoplasms with a high risk of thrombosis (lung, pancreas, stomach, uterus, bladder, and kidney neoplasms). CONCLUSION: Patients with stage IV cancer and acute VTE have short survival. Poor prognostic factors are thrombocytopenia, the ECOG score, and certain types of cancer. These results may help physicians individualize decisions regarding initiation and continuation of anticoagulant therapy.


Assuntos
Neoplasias , Trombocitopenia , Tromboembolia Venosa , Feminino , Humanos , Masculino , Idoso , Tromboembolia Venosa/complicações , Pacientes Ambulatoriais , Estudos Prospectivos , Neoplasias/complicações , Hospitais , Trombocitopenia/complicações , Fatores de Risco , Anticoagulantes/uso terapêutico , Estudos Retrospectivos
3.
Environ Sci Pollut Res Int ; 30(50): 109618-109626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37775634

RESUMO

In Colombia, glyphosate (GP) is used to control weeds, with Roundup Active® being the most widely used. This use has affected aquatic ecosystems, causing malformations in amphibians. The Savannah frog (D. molitor) is a tropical frog inhabiting the mountain of Colombia. In the present study, we determined the effect of sublethal concentrations of GP (Roundup Active®) on the skin of D. molitor. Twenty-four tadpoles were exposed to concentrations of GP (T1: 0, T2: 1.4, T3: 3.6, and T4: 5.6 a.e mg/L) during 31 days. In 10 individuals per treatment, two skin regions were evaluated: dorsal cranial and caudal ventral to determine histopathological alterations. Morphometric analysis of the layers of the skin was performed: epidermis, dermis, and hypodermis-muscular. T1 did not present histopathological alterations. Since T2 was identified, glandular cell hyperplasia and hypertrophy increased melanophores and melanin accumulations in the highest concentrations of GP. The ultrastructure revealed an increase in excretory glands in the dermis. In the other layers, an increase of melanophores and melanocyte clusters was observed accompanied by vacuolization of basal cells. The morphometry showed an increase in the thickness of the dermis in the dorso-cranial region in T2 compared to the other treatments, while the ventral caudal region exhibited a variation in the thickness of the dermis from T2 and a decrease in T4. Despite evaluating sublethal concentrations, the skin of D. molitor tadpoles presents histopathological, ultrastructural, and morphometric alterations that could affect the survival of the species in the natural environment.


Assuntos
Herbicidas , Poluentes Químicos da Água , Humanos , Animais , Herbicidas/toxicidade , Ecossistema , Poluentes Químicos da Água/farmacologia , Anuros , Larva , Glifosato
4.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315110

RESUMO

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Assuntos
Anticorpos Antivirais , Orthohantavírus , Humanos , Benchmarking , Anticorpos Amplamente Neutralizantes , Sequência Conservada
5.
Artigo em Inglês | MEDLINE | ID: mdl-35831070

RESUMO

The Bronx was an early epicenter of the COVID-19 pandemic in the USA. We conducted temporal genomic surveillance of 104 SARS-CoV-2 genomes across the Bronx from March October 2020. Although the local structure of SARS-CoV-2 lineages mirrored those of New York City and New York State, temporal sampling revealed a dynamic and changing landscape of SARS-CoV-2 genomic diversity. Mapping the trajectories of mutations, we found that while some became 'endemic' to the Bronx, other, novel mutations rose in prevalence in the late summer/early fall. Geographically resolved genomes enabled us to distinguish between cases of reinfection and persistent infection in two pediatric patients. We propose that limited, targeted, temporal genomic surveillance has clinical and epidemiological utility in managing the ongoing COVID pandemic.

6.
Clin Appl Thromb Hemost ; 28: 10760296221102940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593084

RESUMO

OBJECTIVE: To evaluate the discriminative ability and the calibration of the Pulmonary Embolism Severity Index (PESI) to predict in-hospital mortality in patients with Pulmonary Embolism (PE) secondary to COVID 19 in two hospitals in Bogotá. METHODS: External validation study of a prediction model based on a retrospective cohort of patients with PE secondary to COVID-19 treated at Hospital Universitario San Ignacio and Hospital universitario La Samaritana, between March 2020 and August 2021. Calibration of the scale was evaluated using the Hosmer-Lemeshow test and a calibration belt diagram. Discrimination ability was evaluated using a ROC curve. RESULTS: 272 patients were included (median age 61.5 years, male 58.8%). PE was diagnosed in 45.6% of the patients at the time of admission. Of the remaining 54.4%, 95.9% received thromboprophylaxis until the time of diagnosis.17.6% of the patients died. Regarding calibration, the scale systematically underestimates risk in all classes of PESI. For class I, the ratio of observed/expected events was 4.4 vs 0.8%, class II 4.8 vs 1.8%, class III 15.2 vs 4.2%, class IV 14.3 vs 5.9% and class V 46.7 vs 5.8%. The calibration test rejected the adequate calibration hypothesis (p < 0.001). The discriminatory ability was adequate (AUC = 0.7128, 95% CI 0.63-0.79). CONCLUSIONS: The PESI scale in patients with PE secondary to COVID 19 underestimates the risk of in-hospital mortality, while maintaining adequate discrimination. It is suggested not to use the PESI scale until it is recalibrated in this context.


Assuntos
COVID-19 , Embolia Pulmonar , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Tromboembolia Venosa , Anticoagulantes , COVID-19/complicações , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Embolia Pulmonar/diagnóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Tromboembolia Venosa/complicações
7.
PLoS Comput Biol ; 18(1): e1009778, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041647

RESUMO

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.


Assuntos
Anticorpos Antivirais/sangue , COVID-19 , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/terapia , Biologia Computacional , Diagnóstico por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
8.
medRxiv ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594384

RESUMO

The Bronx was an early epicenter of the COVID-19 pandemic in the USA. We conducted temporal genomic surveillance of SARS-CoV-2 genomes across the Bronx from March-October 2020. Although the local structure of SARS-CoV-2 lineages mirrored those of New York City and New York State, temporal sampling revealed a dynamic and changing landscape of SARS-CoV-2 genomic diversity. Mapping the trajectories of variants, we found that while some became 'endemic' to the Bronx, other, novel variants rose in prevalence in the late summer/early fall. Geographically resolved genomes enabled us to distinguish between cases of reinfection and persistent infection in two pediatric patients. We propose that limited, targeted, temporal genomic surveillance has clinical and epidemiological utility in managing the ongoing COVID pandemic. One sentence summary: Temporally and geographically resolved sequencing of SARS-CoV-2 genotypes enabled surveillance of novel genotypes, identification of endemic viral variants, and clinical inferences, in the first wave of the COVID-19 pandemic in the Bronx.

9.
mBio ; 12(5): e0247321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607456

RESUMO

Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neutralization. Therefore, therapies that are less susceptible to resistance are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD). Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an epitope that includes residue F490. The most potent NTD nAb epitope included Y145, K150, and W152. As seen with some of the natural VOC, the neutralization potencies of COVID-19 convalescent-phase sera were reduced by 4- to 16-fold against rVSV-SARS2 bearing Y145D, K150E, or W152R spike mutations. Moreover, we found that combining RBD and NTD nAbs did not enhance their neutralization potential. Notably, the same combination of RBD and NTD nAbs limited the development of neutralization-escape mutants in vitro, suggesting such a strategy may have higher efficacy and utility for mitigating the emergence of VOC. IMPORTANCE The U.S. FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (MAb) therapies for the treatment of mild to moderate COVID-19. These MAb therapeutics are solely targeting the receptor-binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of the spike protein also carries crucial neutralizing epitopes. Here, we show that key mutations in the N-terminal domain can reduce the neutralizing capacity of convalescent-phase COVID-19 sera. We report that a combination of two neutralizing antibodies targeting the receptor-binding and N-terminal domains may be beneficial to combat the emergence of virus variants.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/genética , COVID-19/imunologia , Mutação/imunologia , Motivos de Ligação ao RNA/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Humanos , Testes de Neutralização
10.
mSphere ; 6(2)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883259

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , COVID-19/epidemiologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Estudos de Casos e Controles , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Monitoramento Epidemiológico , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
11.
Arch Pathol Lab Med ; 145(8): 929-936, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33821952

RESUMO

CONTEXT.­: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) testing is used for serosurveillance and will be important to evaluate vaccination status. Given the urgency to release coronavirus disease 2019 (COVID-19) serology tests, most manufacturers have developed qualitative tests. OBJECTIVE.­: To evaluate clinical performance of 6 different SARS-CoV-2 IgG assays and their quantitative results to better elucidate the clinical role of serology testing in COVID-19. DESIGN.­: Six SARS-CoV-2 IgG assays were tested using remnant specimens from 190 patients. Sensitivity and specificity were evaluated for each assay with the current manufacturer's cutoff and a lower cutoff. A numeric result analysis and discrepancy analysis were performed. RESULTS.­: Specificity was higher than 93% for all assays, and sensitivity was higher than 80% for all assays (≥7 days post-polymerase chain reaction testing). Inpatients with more severe disease had higher numeric values compared with health care workers with mild or moderate disease. Several discrepant serology results were those just below the manufacturers' cutoff. CONCLUSIONS.­: Severe acute respiratory syndrome coronavirus 2 IgG antibody testing can aid in the diagnosis of COVID-19, especially with negative polymerase chain reaction. Quantitative COVID-19 IgG results are important to better understand the immunologic response and disease course of this novel virus and to assess immunity as part of future vaccination programs.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Teste Sorológico para COVID-19/estatística & dados numéricos , Estudos de Coortes , Humanos , Cidade de Nova Iorque/epidemiologia , Pandemias , Sensibilidade e Especificidade , Índice de Gravidade de Doença
12.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458462

RESUMO

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

13.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476300

RESUMO

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/terapia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Feminino , Mortalidade Hospitalar , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pontuação de Propensão , Estudos Retrospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Resultado do Tratamento , Soroterapia para COVID-19
14.
medRxiv ; 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33300012

RESUMO

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.

15.
mSphere ; 5(6)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239369

RESUMO

Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of antibiofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital-acquired infections and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-cell communication, virulence factor delivery, and transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Several groups have shown that Pseudomonas quinolone signal (PQS) induces OMV formation in P. aeruginosa Our group described a biophysical mechanism for this and recently showed it is operative in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype was rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components.IMPORTANCE Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed. Pseudomonas quinolone signal (PQS) has been implicated in early biofilm development, but we hypothesized that its function as an outer membrane vesicle (OMV) inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during Pseudomonas aeruginosa biofilm development and provide evidence that effective biofilm dispersion is dependent on the production of PQS-induced OMVs, which likely act as delivery vehicles for matrix-degrading enzymes. These findings lay the groundwork for understanding OMV contributions to biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Biogênese de Organelas , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum , Fatores de Virulência/metabolismo
16.
medRxiv ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935116

RESUMO

The COVID-19 global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to place an immense burden on societies and healthcare systems. A key component of COVID-19 control efforts is serologic testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test makes it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.

17.
Cell Host Microbe ; 28(3): 486-496.e6, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738193

RESUMO

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Avaliação Pré-Clínica de Medicamentos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Mutação , Testes de Neutralização , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Receptores Virais/genética , Receptores Virais/fisiologia , Recombinação Genética , SARS-CoV-2 , Serina Endopeptidases/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Internalização do Vírus , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
18.
bioRxiv ; 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32511337

RESUMO

Broadly protective vaccines against known and pre-emergent coronaviruses are urgently needed. Critical to their development is a deeper understanding of cross-neutralizing antibody responses induced by natural human coronavirus (HCoV) infections. Here, we mined the memory B cell repertoire of a convalescent SARS donor and identified 200 SARS-CoV-2 binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of pre-existing memory B cells (MBCs) elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a new target for the rational design of pan-sarbecovirus vaccines.

19.
bioRxiv ; 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32511365

RESUMO

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, and define correlates of immune protection, and to down-select candidate antivirals. Here, we describe a highly infectious recombinant vesicular stomatitis virus bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein that closely resembles the authentic agent in its entry-related properties. We show that the neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S and that neutralization of the rVSV and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific vaccines and therapeutics and for mechanistic studies of viral entry and its inhibition.

20.
Science ; 369(6504): 731-736, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540900

RESUMO

Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Afinidade de Anticorpos , Subpopulações de Linfócitos B/imunologia , Sítios de Ligação , Reações Cruzadas , Epitopos , Feminino , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos , Receptores de Coronavírus , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...